Non-cell-autonomous induction of tissue overgrowth by JNK/Ras cooperation in a Drosophila tumor model.

نویسندگان

  • Mirka Uhlirova
  • Heinrich Jasper
  • Dirk Bohmann
چکیده

The role of c-Jun N-terminal kinase (JNK) signaling in cancer is enigmatic, and both tumor-promoting and tumor-suppressing functions have been ascribed to JNK pathway components. We have used the Drosophila eye to investigate the function of the JNK pathway in three different tumor models of increasing malignancy. Benign lesions caused by loss of the neoplastic tumor suppressor gene scribble can efficiently be eliminated by JNK-induced apoptosis. In such a scenario, the eye reverts to a wild-type phenotype, indicating that the JNK pathway prevents tumor formation. The situation changes in the case of aggressive tissue overgrowth, which can be induced by oncogenic activation of the Ras/Raf pathway in the eye, or in malignant invasive tumors resulting when Raf activation is combined with loss of scribble. The growth of these more aggressive tumor types is significantly, yet incompletely, suppressed by JNK-mediated apoptosis. Remarkably, oncogenic Raf and JNK cooperate in these tumors, to induce massive hyperplasia in adjacent wild-type tissue. Thus, depending on the genetic context, JNK signaling can eradicate tumors by removing premalignant cells, or promote aberrant overgrowth in tissues surrounding primary lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dev108092 4729..4739

Oncogenic mutations in Ras deregulate cell death and proliferation to cause cancer in a significant number of patients. Although normal Ras signaling during development has been well elucidated in multiple organisms, it is less clear how oncogenic Ras exerts its effects. Furthermore, cancers with oncogenic Ras mutations are aggressive and generally resistant to targeted therapies or chemotherap...

متن کامل

BTB-Zinc Finger Oncogenes Are Required for Ras and Notch-Driven Tumorigenesis in Drosophila

During tumorigenesis, pathways that promote the epithelial-to-mesenchymal transition (EMT) can both facilitate metastasis and endow tumor cells with cancer stem cell properties. To gain a greater understanding of how these properties are interlinked in cancers we used Drosophila epithelial tumor models, which are driven by orthologues of human oncogenes (activated alleles of Ras and Notch) in c...

متن کامل

Non‐autonomous overgrowth by oncogenic niche cells: Cellular cooperation and competition in tumorigenesis

Tumor progression is classically viewed as the Darwinian evolution of subclones that sequentially acquire genetic mutations and autonomously overproliferate. However, growing evidence suggests that tumor microenvironment and subclone heterogeneity contribute to non-autonomous tumor progression. Recent Drosophila studies revealed a common mechanism by which clones of genetically altered cells tr...

متن کامل

JNK- and Fos-regulated Mmp1 expression cooperates with Ras to induce invasive tumors in Drosophila.

Loss of the epithelial polarity gene scribble in clones of Drosophila imaginal disc cells can cooperate with Ras signaling to induce malignant tumors. Such mutant tissue overproliferates, resists apoptosis, leaves its place of origin and invades other organs, ultimately causing lethality. We show that increased Jun N-terminal kinase (JNK) signaling resulting from the loss of scribble promotes t...

متن کامل

In Drosophila, RhoGEF2 cooperates with activated Ras in tumorigenesis through a pathway involving Rho1–Rok–Myosin-II and JNK signalling

The Ras oncogene contributes to ≈ 30% of human cancers, but alone is not sufficient for tumorigenesis. In a Drosophila screen for oncogenes that cooperate with an activated allele of Ras (Ras(ACT)) to promote tissue overgrowth and invasion, we identified the GTP exchange factor RhoGEF2, an activator of Rho-family signalling. Here, we show that RhoGEF2 also cooperates with an activated allele of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 37  شماره 

صفحات  -

تاریخ انتشار 2005